2.8 LINEAR APPROXIMATIONS AND DIFFERENTIALS

FIGURE I

V EXAMPLE A Suppose that after you stuff a turkey its temperature is $50^{\circ} \mathrm{F}$ and you then put it in a $325^{\circ} \mathrm{F}$ oven. After an hour the meat thermometer indicates that the temperature of the turkey is $93^{\circ} \mathrm{F}$ and after two hours it indicates $129^{\circ} \mathrm{F}$. Predict the temperature of the turkey after three hours.

SOLUTION If $T(t)$ represents the temperature of the turkey after t hours, we are given that $T(0)=50, T(1)=93$, and $T(2)=129$. In order to make a linear approximation with $a=2$, we need an estimate for the derivative $T^{\prime}(2)$. Because

$$
T^{\prime}(2)=\lim _{t \rightarrow 2} \frac{T(t)-T(2)}{t-2}
$$

we could estimate $T^{\prime}(2)$ by the difference quotient with $t=1$:

$$
T^{\prime}(2) \approx \frac{T(1)-T(2)}{1-2}=\frac{93-129}{-1}=36
$$

This amounts to approximating the instantaneous rate of temperature change by the average rate of change between $t=1$ and $t=2$, which is $36^{\circ} \mathrm{F} / \mathrm{h}$. With this estimate, the linear approximation (1) for the temperature after 3 h is

$$
\begin{aligned}
T(3) & \approx T(2)+T^{\prime}(2)(3-2) \\
& \approx 129+36 \cdot 1=165
\end{aligned}
$$

So the predicted temperature after three hours is $165^{\circ} \mathrm{F}$.
We obtain a more accurate estimate for $T^{\prime}(2)$ by plotting the given data, as in Figure 1, and estimating the slope of the tangent line at $t=2$ to be

$$
T^{\prime}(2) \approx 33
$$

Then our linear approximation becomes

$$
T(3) \approx T(2)+T^{\prime}(2) \cdot 1 \approx 129+33=162
$$

and our improved estimate for the temperature is $162^{\circ} \mathrm{F}$.
Because the temperature curve lies below the tangent line, it appears that the actual temperature after three hours will be somewhat less than $162^{\circ} \mathrm{F}$, perhaps closer to $160^{\circ} \mathrm{F}$.

